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INTRODUCTION
Caprocks are natural sedimentary formations that overlie CO2 injection
reservoirs. These natural seals are relied-upon for containment of pressurized
fluids for 100s to 1000s of years. Human injection induced slip on pre-
existing faults and component fractures implicates a significant mechanism
for large scale breaching of caprocks (seals) on CO2 storage reservoirs and
for uncontrolled loss of inventory.
These uncertainties of caprock performance and durability require rigorous
investigation on the shear strength, slip stability, and rheologic evolution
under slip events. Whether faults will fail seismically or aseismically, how the
permeability will evolve, and especially what are the effect of mineralogy and
texture of faults on these mechanical responses, are key questions.

(Curtesy of World Resources Institute Org.)

 Pre-existing faults may be reactivated during or after sequestration.
 Reactivated faults may slip seismically, or creep.
What regime will the slip event follow? 
Which slip regime will be beneficial?

Seismic or aseismic failure behavior can be closely linked to mineralogy. [Ikari et al. 2011]
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HYPOTHESIS
 Reactivated faults can either slip 

seismically, increasing permeability.
 Or the faults can slip aseismically, 

potentially reducing permeability.
 These behaviors are potentialy controlled 

by mineralogy.

OBJECTIVES
 Examine mineralogical controls on the bulk 

shear strength of faults.
 Examine mineralogical controls on slip 

stability of faults.
 Examine mineralogical controls on 

permeability evolution of faults.

METHOD
DISTINCT ELEMENT MODELING

Biaxial Direct Shear Experiments: 
(1) Constant Velocity
(2) Velocity-stepping
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TRANSITION IN SHEAR STRENGTH

TRANSITION IN SLIP STABILITY

 Talc has a significant effect on reducing the shear strength of quartz 
dominate fault gouge. This effect is enhanced when talc forms a through-
going layer in the gouge.

 In a synthetic gouge consisting of talc and quartz, relatively small 
amounts of talc can transform the stability behavior of the gouge from 
velocity-weakening to velocity strengthening.

 Quartz tend to dilate upon an increase of shear velocity but no apparent 
compaction after a decease of shear velocity, indicating permeability 
enhancement; while talc dilates slowly upon an increase of shear velocity 
but compacts quickly after a decrease of shear velocity, indicating a 
potential permeability destruction effect.

 The linear simplification of rate-state friction law simulating grain-grain 
contact is able to represent the stability evolution of granular fault gouge.

PERMEABILITY EVOLUTION
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a-b>0 suggests velocity 
strengthening resulting in 
aseismic slip and manifest as 
creep.

Velocity 
Weakening
a-b<0 suggests velocity 
weakening brittle response 
and seismic slip may occur.
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CONCLUSIONS
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pµ : the peak friction due to direct effect; 

ssµ : the steady state friction after evolution effect; 
refµ : the reference friction coefficient of last velocity change; 

accD : accumulated relative shear displacement. 
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Fault Breaching?
Permeability Evolution?

[Faulkner, et al. 2010]
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